

Whitepaper

Collection

Volume

5

Rational Unified Process®

An Overview

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 2

Published by

 Alexander Gola
 Gröbenzeller Strasse 37
 82178 Puchheim, Germany
 phone +49 89 84050934
 mobile +49 172 5473831
 e-mail alex@alexander-gola.de
 web www.alexander-gola.de

The information contained in this document represents the current view of the author of the date of publication. The

author cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. The author makes no warranties, express or implied, as to the
information in this document. Without limiting the rights under copyright, no part of this document may be

reproduced, stored in or introduced into a retrieval system or transmitted in any form or by any means (electronic,

mechanical, photocopying, recording or otherwise) or for any purpose, without the express written permission of the
author.

© 2007 Alexander Gola. All rights reserved.

Strategical, Conceptual and Technical Consulting

Senior ConsultingSenior Consulting

mailto:alex@alexander-gola.de
http://www.alexander-gola.de/

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 3

Abstract
This paper describes the Rational Unified Process® (RUP®), which is a software
design methodology created by the Rational Software Corporation. It provides a
disciplined approach to assigning tasks and responsibilities within a development
organization. Its goal is to ensure the production of high-quality software that

meets the needs of its end-users, within a predictable schedule and budget.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 4

Modification History

Version Date Author Description of Changes

0.1 12.02.2004 Alexander Gola Initial Release

1.0 20.02.2004 Alexander Gola First Release

1.1 21.02.2004 Alexander Gola Layout changes

1.2 29.05.2004 Alexander Gola Changes

1.3 12.01.2005 Alexander Gola Enhancements

1.4 18.01.2005 Alexander Gola Enhancements, Chapter “Trademarks”

1.5 27.07.2005 Alexander Gola Changes

1.6 18.10.2005 Alexander Gola Publishing informations

1.7 26.01.2007 Alexander Gola Changed company address

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 5

Table Of Contents

1 The Ten Essentials of a Project - 9 -

1.1 Vision - 9 -
1.2 Plan - 9 -
1.3 Risks - 10 -
1.4 Issues - 10 -
1.5 Business Case - 10 -
1.6 Architecture - 11 -
1.7 Product - 11 -
1.8 Evaluation - 11 -
1.9 Change Requests - 12 -
1.10 User Support - 12 -

2 A Brief History of the Rational Unified Process® - 13 -

3 Introduction into the Rational Unified Process® - 14 -

3.1 Process Framework - 14 -
3.2 Process Overview - 16 -
3.2.1 Management Perspective - 17 -
3.2.2 Technical Perspective - 18 -
3.3 Process Phases - 19 -
3.3.1 Inception Phase - 19 -
3.3.2 Elaboration Phase - 20 -
3.3.3 Construction Phase - 21 -
3.3.4 Transition Phase - 22 -
3.4 Process Workflows - 23 -
3.4.1 Requirements Workflow - 23 -
3.4.2 Analyze and Design Workflow - 25 -
3.4.3 Test Workflow - 27 -
3.4.4 Project Management Workflow - 29 -
3.5 Process Artifacts - 31 -
3.5.1 Management Artifacts - 31 -
3.5.2 Technical Artifacts - 31 -
3.5.3 Requirements - 32 -

4 Planning a RUP® Project - 33 -

4.1 Definition of Project Plan - 33 -
4.2 Characteristics of a Project - 34 -
4.2.1 Iterative Development - 34 -
4.2.2 Milestones - 35 -
4.3 Development of a Project Plan - 36 -
4.3.1 Project Start Activities - 36 -
4.3.2 Project Organization and Staffing - 37 -
4.4 Compilation of a Software Development Plan - 38 -
4.4.1 Project Structure - 38 -
4.5 Development of a Iteration Plan - 41 -
4.5.1 Determine Phases - 41 -
4.5.2 Determine Deliverables - 41 -
4.5.3 Selection of the Appropriate Workflow Template - 43 -
4.5.4 Assocation of Resources with Activities - 43 -
4.5.5 Definition of Monitoring and Control Processes - 43 -
4.5.6 Assessment of Iterations - 43 -

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 6

5 Overview of Available Tools - 45 -

5.1 Rational Suite Team Unifying Platform - 45 -
5.1.1 Rational Unified Process® - 46 -
5.1.2 Rational RequisitePro® - 46 -
5.1.3 Rational ClearQuest® - 46 -
5.1.4 Rational ClearCase® LT - 47 -
5.1.5 Rational SoDA® - 47 -
5.1.6 Rational TestManager - 47 -
5.1.7 Rational ProjectConsole® - 48 -
5.1.8 Rational ContentStudio® - 48 -
5.1.9 Rational NetDeploy® - 48 -
5.1.10 Rational SiteLoad® - 48 -
5.2 Rational Suite AnalystStudio® - 49 -
5.3 Rational Suite DevelopmentStudio® - 49 -
5.4 Rational Suite DevelopmentStudio®-RealTime - 49 -
5.5 Rational Suite TestStudio® - 49 -
5.5.1 Rational Robot - 50 -
5.5.2 Rational TestFactory® - 50 -
5.6 Rational Rose® - 50 -
5.6.1 Rational QualityArchitect® - 51 -
5.6.2 Rational Purify® - 51 -
5.6.3 Rational PureCoverage® - 51 -
5.6.4 Rational Quantify® - 52 -

6 Usage of Tools - 53 -

6.1 Analyst - 54 -
6.1.1 Definition of Requirements - 54 -
6.1.2 Managing Changes - 54 -
6.1.3 Team Communication - 55 -
6.1.4 Progress Measuring and Project Reports - 55 -
6.1.5 System Test - 56 -
6.2 Developer - 56 -
6.2.1 Validation of Requirements - 56 -
6.2.2 Managing and Validation of Changes - 56 -
6.2.3 Team Communication - 57 -
6.2.4 Code and Model Implementation and Consistency - 57 -
6.2.5 System Test - 58 -
6.3 Tester - 59 -
6.3.1 Team Communication - 59 -
6.3.2 Progress Measuring - 59 -
6.3.3 System Test - 60 -

Links - 62 -

References - 63 -

Trademarks and other Acknowledgements - 64 -

Glossary - 65 -

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 7

List Of Figures

Figure 1 Rational Unified Process® History - 13 -
Figure 2 Rational Unified Process® Framework - 14 -
Figure 3 Rational Unified Process® Overview - 16 -
Figure 4 Management Perspective - 17 -
Figure 5 Technical Perspective - 18 -
Figure 6 Requirements Workflow - 23 -
Figure 7 Analyze and Design Workflow - 25 -
Figure 8 Test Workflow - 27 -
Figure 9 Project Management Workflow - 29 -
Figure 10 Rational Unified Process® Timeframe - 38 -
Figure 11 Rational Tools Roadmap - 53 -

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 8

List Of Tables

Table 1 Rational Tools Activities - 16 -
Table 2 Key Questions for the Inception Phase - 39 -
Table 3 Key Questions for the Elaboration Phase - 39 -
Table 4 Key Questions for the Construction Phase - 40 -
Table 5 Key Questions for the Transition Phase - 40 -
Table 6 Rational Tools Overview - 45 -

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 9

1 The Ten Essentials of a Project

The following list describes the minimal set of items a project will have in
place if they are truly following the idea of quality.

1.1 Vision

The vision provides a high-level, sometimes contractual basis for more

detailed technical requirements.
The vision captures very high-level requirements and design constraints to
give the reader an understanding of the system to be developed. It
provides input to the project-approval process and is therefore intimately
related to the business case. It communicates the fundamental "why is
and what is" related to the project and is a gauge against which all future
decisions should be validated.

The contents of the vision should answer the following questions, which
might be broken out to separate, more detailed, artifacts, as needed:

 What are the key terms ? (Glossary)
 What problem are we trying to solve ? (Problem Statement)
 Who are the stakeholders ? Who are the users ? What are their

needs ?
 What are the product features ?
 What are the functional requirements ? (Use Cases)

 What are the non-functional requirements ?
 What are the design constraints ?

1.2 Plan

A Software Development Plan gathers all information required to manage
the project. It may enclose a number of separate artifacts developed
during this phase and is maintained throughout the project.

The plan is used to plan the project schedule and resource needs and to
track progress against the schedule. It addresses such areas as: Project
Organization, Schedule (Project Plan, Iteration Plan, Resources and Tools),
Requirements Management Plan, Configuration Management Plan,
Problem Resolution Plan, QA Plan, Test Plan, Test Cases, Evaluation Plan
and Product Acceptance Plan.
In a simple project, these may include only one or two sentences each.

The format of the plan itself is not as important as the activity and
thought that go into producing it.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 10

1.3 Risks

An essential precept of the process is to identify and attack the highest
risk items early in the project.
The risk list is intended to capture the perceived risks to the success of
the project. It identifies, in decreasing order of priority, the events which
could lead to a significant negative outcome.
Along with each risk, should be a plan for mitigating that risk. This serves

as a focal point for planning project activities and is the basis around
which iterations are organized.

1.4 Issues

Continuous open communication with objective data derived directly from
ongoing activities and the evolving product configurations are important in
any project.

In a quality process, this is done through regular status assessments,
which provide the mechanism for addressing, communicating and
resolving management issues, technical issues and project risks. In
addition to identifying the issues, each should be assigned a due date,
with a responsible person who is accountable for the resolution. This
should be regularly tracked and updated as necessary. These project
snapshots provide the heartbeat for management attention. While the

period may vary, the forcing function needs to capture the project history
and resolve to remove any roadblocks or bottlenecks that restrict
progress.

1.5 Business Case

The Business Case provides the necessary information, from a business
standpoint, to determine whether or not this project is worth investing in.

The main purpose is to develop an economic plan for realizing the project
Vision. Once developed, the Business Case is used to make an accurate
assessment of the Return On Investment (ROI) provided by the project. It
provides the justification for the project and establishes its economic
constraints. It provides information to the economic decision makers on
the projects worth and is used to determine whether the project should
move ahead.
The description should not delve deeply into the specifics of the problem,

but rather it should create a compelling argument why the product is
needed. It must be brief, however, so that it is easy enough for all project
team members to understand and remember. At critical milestones, the
Business Case is re-examined to see if estimates of expected return and
cost are still accurate and whether the project should be continued.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 11

1.6 Architecture

The architecture of a software system is the organization or structure of
the systems significant components interacting through interfaces, with
components composed of successively smaller components and interfaces.
A good process provides a methodical, systematic way to design, develop
and validate a software architecture. This is the “essence” of an Analysis
and Design workflow: defining a candidate architecture, refining the

architecture, analyzing behaviour and designing components of the
system.
To speak and reason about software architecture, first it must define an
architectural representation, a way of describing important aspects of an
architecture. This description is captured in the Software Architecture
Document, which presents the architecture in multiple views. Each
architectural view addresses some specific set of concerns, specific to

stakeholders in the development process: end users, designers,
managers, system engineers, maintainers and so on. This serves as a
communication medium between the architect and other project team
members regarding architecturally significant decisions which have been
made on the project.

1.7 Product

The “essence” of the Implementation and Test workflows is to
incrementally code, build and test the components of the system, with
executable releases at the end of each iteration after inception.
At the end of this phase, an architectural prototype is available for
evaluation. This might also include a user-interface prototype, if
necessary. Throughout each iteration of the next phase, components are
integrated into executable, tested builds that evolve into the final product.
Key to this essential element is an integrated set of test activities that

accompany the building of the product - as well as ongoing Configuration
Management and review activities.

1.8 Evaluation

The Iteration Assessment captures the results of an iteration, the degree
to which the evaluation criteria were met, the lessons learned and process
changes to be implemented.

The Iteration Assessment is an essential artifact of the iterative approach.
Depending on the scope and risk of the project and the nature of the
iteration, it may range from a simple record of demonstration and
outcomes to a complete formal test review record.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 12

1.9 Change Requests

The “essence” of the Configuration and Change Management workflow is
to manage and control the scope of the project, as changes occur
throughout the project lifecycle, while maintaining the goal of considering
all stakeholder needs and meeting those, to whatever extent possible.
As soon as the first prototype is put before the users (and often even
before that), changes will be requested. In order to control those changes

and effectively manage the scope of the project and expectations of the
stakeholders, it is important that all changes to any development artifacts
be proposed through Change Requests and managed with a consistent
process.
Change Requests are used to document and track defects, enhancement
requests and any other type of request for a change to the product. The
benefit of Change Requests is that they provide a record of decisions, and,

due to their assessment process, ensure that impacts of the potential
change are understood by all project team members. The Change
Requests are essential for managing the scope of the project, as well as
assessing the impact of proposed changes.

1.10 User Support

The “essence” of the Deployment workflow is to wrap up and deliver the

product, along with whatever materials are necessary to assist the end-
user in learning, using, operating and maintaining the product.
At a minimum, this should include a User Guide, perhaps implemented
through online help and may also include an Installation Guide and
Release Notes. Depending on the complexity of the product, training
materials may also be needed, as well as a bill of materials along with any
product packaging.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 13

2 A Brief History of the Rational Unified

Process®

The Rational Unified Process®, or RUP®, has matured over many years and
reflects the collective experience of many peoples and companies.

Rational Unified Process®

 Version 5.0

Rational Objectory Process
 Version 4.1

Rational Objectory Process
 Version 4.0

Rational Unified Process®

 2002

Rational Unified Process®

 2000

Rational Approach
Objectory Process

 Version 3.8

1998
 Performance Testing

 Business Engineering

 Configuration and Change

Management

1998
 Objectory UI Design

 Data Engineering

 UML 1.2

1997
 Requirements College

1997
 SQA Process

 UML 1.0

1996
 OMT

1996
 UML 0.8

1995

Figure 1 Rational Unified Process® History

Going backwards in time, the Rational Unified Process® is the direct
successor to the Rational Objectory Process Version 4. The process

incorporates more material in the areas of data engineering, business
modelling, project management and configuration management, the latter
as a result of the merger with Pure-Atria. It also brings a tighter
integration to the Rational Software suite of tools.
The Rational Objectory Process was the result of the integration of the
“Rational Approach” and the Objectory Process Version 3, after the merger
of Rational Software Corporation and Objectory AB in 1995. From its

Objectory ancestry, the process has inherited its process structure and the
central concept of use case. From the Rational background, it gained the
current formulation of iterative development and architecture. This version
also incorporated material on requirements management from Requisite,
Inc. and a detailed test process inherited from SQA,® Inc., companies
which also merged with Rational Software. Finally, this process was the
first one to use the newly created Unified Modeling Language (UML 0.8).
The Objectory Process was created in Sweden in 1987 by Ivar Jacobson as

the result of his experience with Ericsson. This process became a product
at his company, Objectory AB. Centered around the concept of use case
and an object-oriented design method, it rapidly gained recognition in the
software industry and has been adopted and integrated by many
companies worldwide.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 14

3 Introduction into the Rational Unified

Process®

The Rational Unified Process® is a configurable software development
process platform that delivers proven best practices and a configurable
architecture. The framework provides development teams with a common
set of software development best practices. The RUP® can easily be
adapted to the specific needs of projects and teams and for each stage of

a project.
The RUP® platform includes tools for configuring to project specific needs
and for developing own internal knowledge into process.

3.1 Process Framework

It is much more effective to take a more systematic and holistic approach,
making sure that the key elements of a process are in place (architecture)

before determining to focus on any one particular problem area.
Once this framework (or architecture) for a quality software process is in
place, then a project can effectively focus on a particular area which is
identified as being a major contributor to their problems.

Configuration and

Change Management

Environment

Initial

Planning

Planning

Business

Modeling

Deployment

Test

Implementation

Analysis and DesignRequirements

Evaluation

Figure 2 Rational Unified Process® Framework

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 15

By adopting the RUP® framework, an organization can shortcut the need
to internally develop and document its procedures. By tailoring the RUP®
to meet its specific needs, teams can quickly take advantage of proven
best practices, templates, guidelines and other assets to create a custom

blueprint for project success.
The RUP® helps also to satisfy many goals from the Capability Maturity
Model® (CMM). This industry quality model helps to consolidate existing
software and systems capability maturity models, helps to reduce
complexity and increase the ROI associated with engineering process
improvement.
For more informations about the CMM model, see my Whitepaper
Collection document called “Capability Maturity Model - An Overview”.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 16

3.2 Process Overview

The Rational Unified Process® may be approached from two different and
integrated perspectives:

 Phases - a management perspective, dealing with the financial,
strategic, commercial and human aspects

 Iterations - a technical perspective, dealing with quality,
engineering and design method aspects

Inception Elaboration Construction Transition

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

Configuration and Change

Management

Project Management

Environment

Iteration
Iter.

#1

Iter.

#2

Iter.

#n

Iter.

#n+1

Iter.

#n+2

Iter.

#m+1

Iter.

#m+2

Internal

Release

Mile-

stone
 First External

Release

End-

Release

Phases

Iterations

Figure 3 Rational Unified Process® Overview

In an iterative process, the activities of planning, test and integration are
spread incrementally throughout the cycle, in each iteration and not
massively lumped at the beginning and at the end. They do not appear as

separate steps or phases in the process.
Although this will vary considerably depending on the project
discriminates, a typical initial development cycle for a medium size project
should anticipate the following ratios for various activities:

Activities Ratio

Planning and Management 15 %

Analysis / Requirements 10 %

Design / Integration 15 %

Implementation / Functional Tests 30 %

Measurement / Assessment / Acceptance Test 15 %

Tools / Environment / Change Management 10 %

Maintenance (fixes during development) 5 %

Table 1 Rational Tools Activities

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 17

3.2.1 Management Perspective

As seen from a management perspective, the business and economics

point of view, the software life-cycle is organized along four main phases.
These phases are the indicators of the project progress:

 Inception - Specifying the end-product vision and its business case,
defining the scope of the project.

 Elaboration - Planning the necessary activities and required
resources; specifying the features and designing the architecture.

 Construction - Building the product and evolving the vision, the
architecture and the plans until the product (the completed vision)

is ready for transfer to its user community.
 Transition - Transitioning the product to its user community, which

includes manufacturing, delivering, training, supporting,
maintaining the product until the users are satisfied.

Going through these phases is called a development cycle and it produces
a software generation. Unless the life of the product stops, an existing
product will evolve into its next generation by repeating the same

sequence of inception, elaboration, construction and transition phases,
with a different emphasis however on the various phases. As the product
eventually goes through several cycles, new generations are being
produced.

Inception

Generation 1Initial Development Cycle

Elaboration Evolution

Construction Transition

Next Evolution Cycle Generation 2

EvolutionElaborationInception

TransitionConstruction

Figure 4 Management Perspective

In practice, cycles may slightly overlap: the inception and elaboration
phase may start during the trailing part of the transition phase of the
previous cycle.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 18

3.2.2 Technical Perspective

From a technical perspective the software development is seen as a

succession of iterations, through which the software under development
evolves incrementally.
Each iteration is concluded by the release of an executable product which
may be a subset of the complete vision, but useful from some engineering
or user perspective. Each release is accompanied by supporting artifacts:
release description, user documentation, plans, etc.

Conceptual

Prototype

Preliminary

Iteration

Iteration

#1

Iteration

#2

Iteration

#n+1

Iteration

#n+2
Iteration

#m

Iteration

#m+1

Iteration

#m+2

Archtitechtural

Prototype

Archtitechtural

Baseline

Release 1 Release 2 Release 3 Delivery 1 Delivery 2

Time
Figure 5 Technical Perspective

A iteration consists of the activities of planning, analysis, design,
implementation, testing, in various proportions depending on where the
iteration is located in the development cycle.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 19

3.3 Process Phases

3.3.1 Inception Phase

This phase brings to light an original vision of a potential product and

transforms it into an actual project. Its purpose is to establish the
business case for a new product or a major update and to specify the
project scope.
For the development of a new product, the main outcome of this phase is
a “go-no go” decision to move into the next phase and to invest time and
money to analyze in detail what it to be built, can it be built and how to
build it.

For the evolution of an existing product, this may be a simple and short
phase, based on users or customers requests, on problem reports and on
new technological advances. For a contractual development, the decision
to proceed is based on experience of the specific domain and on the
competitiveness of the development organization in this domain or
market. In this case the inception phase may be concluded by a decision
to bid or by the bid itself. The idea may be based on an existing research
prototype, whose architecture may or may not be suitable for the final

software.

Entry criteria
The expression of a need, which can take any of the following forms:

 an original vision
 a legacy system
 an Request For Proposal (RFP)

 the previous generation and a list of enhancements
 some assets (software, know-how, financial assets)
 a conceptual prototype or a mock-up

Exit criteria

 An initial business case containing at least:
 a clear formulation of the product vision in terms of

functionality, scope, performance, capacity, technology base

 success criteria (for instance revenue projection)
 an initial risk assessment
 an estimate of the resources required to complete the

elaboration phase
 Optionally at the end of the inception phase, there are:

 an initial domain analysis model (~10%-20% complete),
identifying the top key use cases and sufficient to drive the

architecture effort
 an initial architectural prototype, which at this stage may be a

throw-away prototype

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 20

3.3.2 Elaboration Phase

The purpose of this phase is to more thoroughly analyze the problem

domain, to define and stabilize the architecture and to address the highest
risk elements of the project. So that at the end of the phase the project
team can produce a comprehensive plan showing how the two next
phases will be done:

 A baseline product vision (i.e., an initial set of requirements) based
on an analysis model

 Evaluation criteria for at least the first construction iteration
 A baseline software architecture

 The resources necessary to develop and deploy the product,
especially in terms of people and tools

 A schedule
 A resolution of the risks sufficient to make a “high fidelity” cost,

schedule and quality estimate of the construction phase.

In this phase an executable architectural prototype is built, in one or

several iterations depending on the scope, size, risk and novelty of the
project, which addresses at least the top key use cases identified in the
inception phase and which addresses the top technical risks of the project.
This is an evolutionary prototype, of production quality code which
becomes the architectural baseline, but it does not exclude the
development of one or more exploratory, throw-away prototypes to
mitigate specific risks: refinements of the requirements, feasibility,
human-interface studies, demonstrations to investors, etc.

At the end of this phase, there is again a “go-no go” decision point to
actually invest and build the product (or bid for the complete development
of the contract). The plans produced must be detailed enough and the
risks sufficiently mitigated to be able to determine with accuracy the cost
and schedule for the completion of the development.

Entry criteria

 The products and artifacts described in the exit criteria of the
previous phase

 The plan was approved by the project management, funding
authority and the resources required for the elaboration phase have
been allocated

Exit criteria

 a detailed software development plan, containing:
 an updated risk assessment
 a management plan
 a staffing plan
 a phase plan showing the number and contents of the iteration
 an iteration plan, detailing the next iteration
 the development environment and other tools required
 a test plan

 a baseline vision, in the form of a set of evaluation criteria for the
final product

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 21

 objective, measurable evaluation criteria for assessing the results of
the initial iterations(s) of the construction phase

 a domain analysis model (80% complete), sufficient to be able to
call the corresponding architecture “complete”

 a software architecture description (stating constraints and
limitations)

 an executable architecture baseline

3.3.3 Construction Phase

This phase is broken down into several iterations, fleshing out the
architecture baseline and evolving it in steps or increments towards the
final product. At each iteration, the various artifacts prepared during the
elaboration phase are expanded and revised, but they ultimately stabilize
as the system evolves in correctness and completeness.

New artifacts are produced during this phase beside the software itself:
documentation, both internal and for the end-users, test beds, test suites
and deployment collaterals to support the next phase.

Entry criteria for each iteration

 The product and artifacts of the previous iteration. The plan must
state the iteration specific goals:

 Additional capabilities being developed, e.g. which use cases or
scenarios will be covered.

 Risks being mitigated during this iteration.
 Defects being fixed during the iteration.

Exit criteria
The same products and artifacts, updated, plus:

 A release description document, which captures the results of an

iteration.
 Test cases and results of the tests conducted on the products.
 An iteration plan, detailing the next iteration.
 Objective measurable evaluation criteria for assessing the results of

the next iteration(s).

Towards the end of the construction phase the following artifacts must be

produced and are additional exit criteria for the last iteration of the phase:
 a deployment plan, specifying as necessary:

 production and packaging (e.g., making CD’s and manuals)
 pricing
 roll out
 support
 training

 transition strategy (e.g., an upgrade plan from an existing
system)

 user documentation

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 22

3.3.4 Transition Phase

The transition phase is the phase where the product is put in the hands of

its end users. It involves issues of marketing, packaging, installing,
configuring, supporting the user community, making corrections, etc.
From a technical perspective the iterations continue with one or more
releases (or deliveries), e.g. beta releases, general availability releases,
bug fix or enhancement releases.
The phase is completed when the user community is satisfied with the
product: formal acceptance for example in a contractual setting, or when
all activities on this product are terminated. It is the point where some of

the accumulated assets can be made reusable by the next cycle or by
some other projects.

Entry criteria

 The product and artifacts of the previous iteration and in particular
a software product sufficiently mature to be put into the hands of
its users.

Exit criteria

 An update of some of the previous documents, as necessary, the
plan being replaced by a “post-mortem” analysis of the
performance of the project relative to its original and revised
success criteria.

 A brief inventory of the organizations new assets as a result this
cycle.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 23

3.4 Process Workflows

3.4.1 Requirements Workflow

The job of an analyst is to identify the problem that an organization will

address. He represents stakeholders by capturing, organizing and
managing their expectations and requests for the system. To clearly
define the right system, the analyst interprets stakeholder requests and
articulates this information as requirements.
The following figure shows a typical requirements workflow. Each detail of
the workflow represents an activity to perform to ensure effective
requirements management.

New System Existing System

Understand

Stakeholder Needs

Analyze the

Problem

Define the System

Addressing correct

problem

Incorrect

problem

Manage the Scope

of the System

Cant do all Work

Refine the System

Definition

Manage Changing

Requirements

Work in Scope

New Input

Figure 6 Requirements Workflow

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 24

The main requirements:
 Define the boundaries of the system.
 Provide a basis for planning the technical contents of each iteration.
 Provide a basis for estimating cost and time to develop the system.

 Define a user interface for the system, focusing on the needs and
goals of the users.

Throughout this effort, the analyst must work with all stakeholders to
clarify the problem space and solution requirements. Even as the
development objectives and requirements change during the project, the
job is to maintain communication with stakeholders and a shared
understanding of the requirements.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 25

3.4.2 Analyze and Design Workflow

The job of a developer is to review project requirements and to make

decisions about the structural elements and interfaces of the system. As
requirements change and new problems arise in each iteration, the
developer must refine the system architecture.
The following figure shows a typical requirements workflow, which shows
how developers verify that a design model fulfils system requirements and
that it serves as a good basis for its implementation.

Early Elaboration

Iteration

Define a Candidate

Architecture

Inception Iteration

(optional)

Perform

Architectural

Synthesis

Analyze Behavior

optional

Component

Design

Database

Design

Refine Architecture

Figure 7 Analyze and Design Workflow

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 26

In the system design, the developer lay out the components of the
architecture. These individual components are independent, replaceable
parts of the system that have clearly-defined functions and interfaces.
When the developer works with component-based architectures, the team

can easily create new components. Team members can also reuse, or
even customize, existing components from previous projects or
commercially available sources.
The job of a developer is also to produce executable code that can be
evaluated against the project requirements and the design during each
iteration. As a responsible developer, the code will test before it release to
other developers or to the testing group. This approach lets the developer
to discover and respond to problems early enough to minimize their

impact on the project.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 27

3.4.3 Test Workflow

The job of a tester or a test team is to test releases in planned

increments. During the complete project lifecycle, the tester manages and
track use cases, requirements and tested code.
The following figure shows a typical test workflow. Each workflow detail
represents the key skill needed to verify the proper integration of all
components of the software, to verify that all requirements have been
correctly implemented and to ensure that defects are addressed before
releasing the software.

Another

Technique

Define Evaluation

Mission

Verify Test

Approach

Validate Build

Stability

Test and Evaluate
Achieve

Acceptable Mission

Improve Test

Assets

Another Test Cycle

Figure 8 Test Workflow

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 28

Often, the tester retests code because of updated requirements or
repaired defects. The complete team also runs regression tests on new
builds to detect whether new bugs have appeared where they did not exist
in previous builds.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 29

3.4.4 Project Management Workflow

A project leader must identify and manage project risks, monitor the team

progress and plan each iteration. The ongoing responsibilities are to
assign and schedule work and to monitor the progress of the project.
The following workflow shows how project leaders plan an iterative
project, its iterations and monitor progresses.

Project

canceled

Manage

Iterations

All Subsequent

Iterations

Start of Project

Only

Conceive new

Project

Evaluate Project

Risk and Scope

Develop Software

Development Plan

Project

canceled

Plan for next

Iteration

(Remainder of

Initial Iteration in

Inception

Project Plans

Approved

Evaluate Project

Risk and Scope

Project End Phase End

Close-Out Project Close-Out Phase

Project

completed

Failed

Acceptance

Phase

completed

Iteration

End

Project

canceled

Plan for next

Iteration

Develop Software

Development Plan

Monitor and

Control Project

Iteration

successful

Optional, depending on

Degree of Change

End of Iteration

Canceled

Project

End

Project

Canceled

Project

Canceled

Project

Figure 9 Project Management Workflow

Early in the development lifecycle, the project team identifies, implements

and tests the most risky features and architectures.
Monitoring project progress involves collecting and assessing the latest
metrics or status reports from each team member. Throughout
development, the project leader analyzes project data to determine how
well the team is meeting its objectives. He also uses this data to manage
change and plan subsequent iterations.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 30

In general, the art of project management involves balancing competing
objectives, managing risk and overcoming constraints to successfully
deliver a product that meets the needs of all stakeholders.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 31

3.5 Process Artifacts

The Rational Unified Process® is not document-driven: its main artifact
must remain at all time the software product itself. The documentation
should remain lean and limited to the few documents that bring real value
to the project from a management or technical point of view.

3.5.1 Management Artifacts

The management artifacts are not the product, but are used to drive or
monitor the progress of the project, estimate the risks, adjust the

resources, give visibility to the customer (in a contractual setting) or the
investors.

 An Organizational Policy document, which is the codification of the
organizations process; it contains an instance of this generic
process.

 A Vision document, which describes the system level requirements,
qualities and priorities.

 A Business Case document, describing the financial context,

contract, projected Return On Investment (ROI), etc.
 A Development Plan document, which contains in particular the

overall iteration plan and a plan for the current and upcoming
iteration.

 An Evaluation Criteria document, containing the requirements,
acceptance criteria and other specific technical objectives, which
evolves from major milestone to major milestone. It contains also

the iteration goals and acceptance levels.
 Release Description documents for each release.
 Deployment document, gathering additional information useful for

transition, training, installation, sales, manufacturing and cut-over.
 Status Assessment documents, which contains periodic snapshots

of project status, with metrics of progress, staffing, expenditure,
results, critical risks and actions items.

3.5.2 Technical Artifacts

These artifacts are either the delivered goods: executable software and

manuals, or the blueprints that were used to manufacture the delivered
goods: software models, source code and other engineering information
useful to understand and evolve the product.

 A User Manual, developed early in the life-cycle.
 Software documentation, preferably in the form of self-documenting

source code and models (uses cases, class diagrams, process
diagrams, etc.) captured and maintained with appropriate CASE

tools.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 32

 A Software Architecture document, extracted (abstracted) from the
software documentation, describing the overall structure of the
software, its decomposition in major elements: class categories,
classes, processes, subsystems, the definition of critical interfaces

and rationale for the key design decisions.
Depending on the type of project, this typical document set can be
extended or contracted, some documents can be merged. The documents
do not have to be paper documents - they can be spreadsheet, text-files,
database, annotations in source code, hypertext documents, etc. - but the
corresponding information source must be clearly identified, easily
accessible and some of its history preserved.

3.5.3 Requirements

The Rational Unified Process® is not requirement-driven either. The

requirements for the product evolve during a cycle and take different
forms:

 The Business Case gives the main constraints, mostly in terms of
resources that can be expended.

 The Vision document describes only the key requirements of the
system from a users perspective and it evolves only slowly during
the development cycle.

 The more detailed requirements are elaborated during the
elaboration phase, in the form of use cases and scenarios and are
refined incrementally throughout the construction phase, as the
product and the users needs become better understood. These
more detailed requirements are in the evaluation criteria document;
they drive the definition of the contents of the construction and
transition iterations and are referenced in the iteration plan.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 33

4 Planning a RUP® Project

Although the project management discipline outlined in the Rational
Unified Process® is often not fully appreciated by the development team,
project planning is a critical activity for software development. Good
planning helps the teamwork together to achieve a set of defined goals in
a defined period of time.

4.1 Definition of Project Plan

One of the biggest problems managers face when dealing with a software
development project is that by its very nature, the project is invisible and
non-tactile. It is not like building a bridge, where everyone can see the
progress that is being made. Because the physical result of the software
development project - a running application - and its ongoing progress is

not readily visible, it can be very difficult for the team to visualize and
assess the project status. To deal with this invisibility, the primary
practitioners on the project use abstraction. The architect has a UML
model, the analyst has a requirements model (use cases), the tester a
test plan. The project plan is the equivalent tool for the project manager.
It provides an abstraction or model for the project manager to work with,
share with the team and use to perform impact analysis.
In the modern software development environment, it is crucial to have a

shared and dynamic vision of the project for the team to access and
share.

A project plan performs these functions:

 Helps the manager plan the cash flow and schedule for the project.
 Communicates what is going to be delivered and when.
 Identifies which resources should be available and when they are

required.
 Helps avoid clashes between competing resources on different

activities.
 Helps the team know who is doing what on the project.
 Provides a basis for measuring progress and expenditures.
 Gives the planner some baseline to support replanning activities.
 Helps the customer and management to see what went wrong when

a project runs aground.

A project plan has these key characteristics:

 The plan is target based - it identifies something that must be
delivered on the project. If the plan is to be used as an aid to
motivating the team toward a defined goal, it must provide clear
targets for both the team and individuals to measure their
performance against the plan.

 The plan enables the project manager to understand which team
members are working on which tasks and what the dependencies
are between those tasks.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 34

 The plan provides many different views of the information, as
required by different stakeholders (customers, team members and
management). For example, it might offer a coarse-grain plan, an
artifact plan, a delivery plan and a worker to-do list, among other

things.
 The plan is measurable from a time perspective as well as a project

delivery perspective. Often when asked about progress, a project
manager can report how much time and money has been spent but
cannot quantify how much of the system has been delivered. It is
important for the project manager and the entire team to know the
current state of the project, which key deliverables have been
completed and which key deliverables are forthcoming.

 The plan is up to date. It is connected to the actual tasks being
performed on the project and is the first place a project manager
looks when assessing progress. If a project plan becomes
secondary when assessing performance, it is not being used
correctly.

4.2 Characteristics of a Project

A RUP® project has these two primary aspects that are important to the
project plan: projects are iterative and the project progress is measured
against clear milestones.

4.2.1 Iterative Development

The majority of the RUP® projects are, by definition, iterative. The RUP® is
an incremental process whereby the overall project is broken down into
phases and iterations. The iterations are risk driven - that is, oriented
toward mitigating risks - and each one should deliver executable software

that is demonstrable and testable against the projects requirements and
use cases.
The project manager uses iteration plans to manage the project.
Generally, work that falls outside of an iteration plan should not be
undertaken.

An iteration plan:

 Provides a detailed description of the upcoming phase of work.

 Defines the worker roles involved, necessary activities and artifacts
to be delivered in that iteration.

 Outlines a very clear set of measurement criteria by which progress
can be assessed during the iteration and success can be measured
at the end. Defines specific start/end dates and delivery dates.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 35

4.2.2 Milestones

The RUP® identifies four phases for development projects: inception,

elaboration, construction and transition. Each phase focuses the project
team on a particular aspect of the project and has associated with it a
number of milestones. These milestones help the project manager assess
project progress and ensure that the project will deliver required features
and will have quality built in.
In the context of iterative development, the milestones for a phase
provide a focus for the iterations. Each iteration moves the project
through certain milestones. For example, a iteration within the inception

phase would be structured around the need to understand the scope of
the project; the iteration(s) would provide the management framework for
the team to explore the system boundary, implications of a possible
solution and the size of that solution. The number of iterations would
depend on how difficult it might be to define the scope of the project. If
the scope were very hard to understand or could be grouped into easily
defined pieces, more than one iteration might be needed. If, as is

normally the case, it would take one clear piece of work to understand the
scope, one iteration would be appropriate.
The milestones defined in the RUP® are of necessity quite general; the
project manager will need to refine the milestones so they focus the team
on the needs of the project in its particular organizational context. In
addition, because the aim of a iteration is to mitigate risk, during an
iteration the team will be resolving issues that apply not only to the focus
of the phase but also to other disciplines, such as architecture, testing,

change management or construction. The manager combines the iterative,
risk-oriented approach with the refined milestones to determine the
structure of the project plan.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 36

4.3 Development of a Project Plan

For planning purposes, the RUP® clearly distinguishes between project
planning and planning for a specific iteration.
Fundamentally, project planning involves developing a coarse-grained
plan for the entire project, whereas iteration planning deals with
developing a fine-grained plan for the specific upcoming iteration. In this

section, the team discuss in detail how to develop a project plan.

4.3.1 Project Start Activities

At the start of a project, the manager needs to determine whether it is in
the organizations best interests to engage in the project.
This basic question is often overlooked or taken for granted, but the
exercise of answering it will result in the all-important two C’s: Consensus
and Commitment. The RUP® refers to this project planning stage - which
consists of determining the economic viability of the project (developing a
business case), making a start at identifying and assessing risks and

initiating the project - as the Project Start.

Developing a Business Case
In developing a business case, the project manager documents the
economic value of the proposed product. The artifact resulting from this
activity is the instrument through which funding for the project is obtained

and on which the key stakeholders agree. This artifact can be one page or
one hundred pages. The important element here is to ensure that the
manager have performed the due diligence as a manager to ensure that it
is indeed in the companies best interests to undertake this project.
Keep in mind that the business case is often “make or break” for the
product or project, so time spent laying it out is time well spent.
Consensus by stakeholders on the economic fundamentals and market
need for the product will be essential to gaining funding, resources and

commitment from the organization. This commitment will ideally serve to
drive the project development in the coming weeks or months through
completion.
The RUP® recommends taking the following steps to develop the business
case for the project:

 Describe the product and the need it fulfils.
 Define the business objectives and intended market for the product.

 Define the product or project objectives at a high level.
 Develop a financial forecast including projected revenues and costs

for the project.
 Describe the project constraints that could potentially impact risk

and cost.
 Describe the options that could impact the project success.

Identifying and Assessing Risks

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 37

Identifying and assessing project risks are an essential start-up task. The
resulting artifacts will serve as the basis for risk mitigation and the
development of iterations in the forthcoming elaboration and construction
phases.

The RUP® recommends that project managers take these steps:
 Identify potential risks that would decrease the likelihood that the

development team will be able to deliver the project with the right
features, the specified level of quality, on time and within budget.

 Analyze and prioritize the risks by estimating the impact of each
and the likelihood of its occurrence to determine the risk exposure
for each risk.

 Identify risk avoidance strategies to reorganize the project to

reduce or eliminate risks.
 Identify risk mitigation strategies.
 Identify risk contingency strategies.
 Revisit risks frequently within iterations and subsequent phases.

Initiating the Project

The Initiate Project activity is carried out after the projects business case
is approved. This activity sets up the necessary executive management
and project planning teams (if applicable) and also sets out the criteria
that will be used to determine when the project has been successfully
completed.
It consists of these steps:

 Assign a project review authority responsible for overseeing the

project. For small projects, this authority can be a single person.
 Assign a project planning team, a group of project team members

who will carry out the work of planning the project, maintaining the
project plan and reporting on the ongoing project status.

 Approve project acceptance criteria - objective criteria that will be
used by the customer or key stakeholders to determine when the
artifacts delivered by the project are acceptable.

4.3.2 Project Organization and Staffing

Assuming that the project is considered viable after the start activities,

the next activity will be to define an organizational structure for the
project and to define staffing requirements based on effort estimates.

 Define the project organization based on the characteristics of the
project and external constraints, such as existing organizational
policy.
The RUP® suggests defining the organizational structure of the
project in terms of positions, teams, responsibilities and hierarchy.

 Define staffing requirements based on the effort estimates for the
project, the desired schedule, the chosen organizational structure
and mapping of roles.
The RUP® recommends defining the numbers, type (skills, domain)
and experience of staff required for the project. In addition, the

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 38

RUP® recommends adjusting the software development team from
its baseline as the project moves through its development lifecycle.
For instance, the project team will normally be heavy on
management functions, particularly project management, in the

inception phase. When the project moves into the elaboration
stage, there will be more architectural staff. In construction, the
development staff will be larger. Finally, when the project reaches
the transition stage, the team should be heavy on QA or software
assessment staff.

4.4 Compilation of a Software Development Plan

The next critical phase of developing a project plan is the creation of the
Software Development Plan (SDP). The major activities of the SDP are
defining the project structure and estimating the size of the overall
project.

4.4.1 Project Structure

The RUP® has derived a frame estimate for project planning purposes of
how time should be allocated among the phases.

Software Management

50%

Software Architecture

20%

Software Assessment

10%

Software Development

20%

Inception

Software Management

10%

Software Architecture

50%

Software Assessment

20%

Software Development

20%

Elaboration

Transition Construction

Software Management

10%

Software Architecture

5%

Software Assessment

50%

Software Development

35%

Software Management

10%

Software Architecture

10%

Software Assessment

30%

Software Development

50%

Figure 10 Rational Unified Process® Timeframe

Below are key questions whose answers will shed light on the number of
iterations. Keep in mind that during the life of the project, the structure
may change if phase milestones are not passed or if the project runs into
problems.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 39

Inception Phase

Question Impact

Is the project going to deliver a business

system as well as a computer system ?
Is the project responsible for changing
the business processes as well as

building a computer system ?

Business process re-engineering is a very

complex endeavor and the RUP® only
provides techniques for business
modeling, not for the supporting process.

If, however, the business process is
simple or well understood, it is possible

that work on it may be undertaken in the
inception phase. If this is the case, a more
complex inception phase will be required.

Is there an existing business system ? If
so, is it important to understand the

existing business system ?

If there is a need to understand the
existing business system as well as the

new system, two iterations are needed -
one focused on the existing system and

the second on the new system.

Does everyone on the project have a

good understanding of the business
system that is being supported by the

computer system ?

If there is not a good understanding on

the part of a team, it is worth doing
business modeling and increasing the

length of the inception phase. Having a
clear understanding of the problem, the
team is trying to solve a crucial to a

successful project.

Table 2 Key Questions for the Inception Phase

If the inception phase is considered complex (as determined by the
questions above), the time allocation should be increased by 5% of overall

project time. In addition to the relative size of the phase, the number of
iterations needs to be defined. If there is a need to investigate an existing
system, the number of iterations should be at least two. If the existing
system does not need to be understood, the inception phase normally
comprises just one iteration.

Elaboration Phase

Question Impact

Is the system under consideration a new
system ? Has the team built something
similar to this system before ?

If there is no existing architecture, it will
take time to create one. New systems
make the elaboration phase more

complex.

Is a pre-built framework going to be
used for construction ?

The use of a pre-built framework provides
a number of assumptions about the
overall system architecture and really

reduces the amount of effort required in
the elaboration phase.

Is the technology to be deployed new to
the team ?

If the technology is new to the team,
there is often a steep learning curve

associated with its adoption. This will
lengthen the elaboration phase.

Does the system need to support
concurrent threads of control or have to

respond to asynchronous events ?

Additional activities are associated with
real-time systems development and will

lengthen the elaboration phase.

Table 3 Key Questions for the Elaboration Phase

If the elaboration phase is considered complex (as determined by the
questions above), the time allocation should be increased by 5% of overall

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 40

project time. The number of iterations in the elaboration phase is
determined by the technical architectural risks that are to be mitigated.
Experience indicates that if the architecture is complex or the team is new
to the technology to be deployed, at least two iterations will be needed

during the elaboration phase.

Construction Phase

Question Impact

Exists a separate integration test
environment ?

If there is a separate integration
environment, it may be possible to have

multiple construction releases to this
environment for integration testing. If

there is no integration environment, the
number of releases needs to be kept to a
minimum.

Is the development team spread over
many locations, so that members will be

working in parallel ?

A development team that is spread over
many locations increases the complexity

of the build process and lengthens the
construction phase.

Are the developers involved with the
construction phase familiar with the

approach and technology ?

If the team is new to the technology or
methodology being applied, the

construction phase might be difficult and
will last longer.

Table 4 Key Questions for the Construction Phase

If the construction phase is considered complex (as determined by the
questions above), the time allocation should be increased by 5% of overall
project time. The number of iterations in the construction phase is
determined by both the capability of the team to deliver incrementally and
the underlying technical environment. If both the team and the

environment are capable of supporting rapid incremental delivery, the
number of iterations is defined by the logical pieces of functionality
(collection of use cases) that can be delivered.

Transition Phase

Question Impact

Is there a planning to run a beta

program ?

If a beta program is planned, at least two

transition iterations are needed.

Can the system incrementally delivered

?
If so, how many increments?

Many business environments can not

support a rollout that is undertaken
incrementally. If the supporting business

system must change or the technical
environment is being replaced, the
software product must be released in one

big bang.
It may be possible to determine

deployment increments based on the
geographical distribution of the business.

Table 5 Key Questions for the Transition Phase

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 41

If there are a large number of deployments (increments), the time
allocation for the transition phase may need to be increased to 15% of
total project time.

For a process phase overview example see the spreadsheet “RUP Process
Phases”.

4.5 Development of a Iteration Plan

Once the project manager has completed the coarse-grained project plan,
an iteration plan develops at a more detailed level before every iteration.
Each iteration in a phase moves the project toward the phase milestones

and iteration plans are the mechanism by which this movement happens.
An iteration plan defines a clear objective and associates with it the
activities required to accomplish that objective. This section discusses how
to develop iteration plans.

4.5.1 Determine Phases

The phase the team is in helps to determine the objective of a particular
iteration.
For example, if the project is in the inception phase, the objectives will be
as follows:

 Establishing the projects scope and boundary conditions, including
an operational vision, acceptance criteria and what is intended to be
in the product.

 Exhibiting and maybe demonstrating, at least one candidate
architecture against some of the primary scenarios.

 Determining the critical use cases of the system, the primary
scenarios of operation that will drive the major design tradeoffs.

 Estimating the overall cost and schedule for the entire project (and,
in more detail, for the elaboration phase that will immediately
follow).

 Estimating potential risks (the sources of unpredictability).
 Preparing the supporting environment for the project.

The factors defined earlier in the planning process will help the manager
determine which of these objectives to focus on. Each of these objectives
is associated with a deliverable.

4.5.2 Determine Deliverables

When the team understands the objectives of the phase, the team
understands the deliverables for the iteration - that is, the things
produced during that iteration. A deliverable may be something like a
vision (of the system) or a series of use cases. Each deliverable has

file:///D:/Documents/Senior%20Consulting/Whitepaper%20Collection/Rational%20Unified%20Process/RUP%20Process%20Phases.xls
file:///D:/Documents/Senior%20Consulting/Whitepaper%20Collection/Rational%20Unified%20Process/RUP%20Process%20Phases.xls

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 42

associated with it a workflow template identifying the activities, resources
and other deliverables that will be required to complete this deliverable. It
also has associated with it an artifact, meaning the documentation that
the project produces for that deliverable and that can be used to review

the deliverable at the end of the iteration or workflow.
The following deliverables are samples:

 Business architecture - Describes the business processes and how
those business processes are realized within the activity system
being investigated. This deliverable is needed only if business
modeling is being undertaken.

 Business case - Provides benefit and cost information about the
product being built and defines success criteria for the project.

 Vision - Defines what the product does, the market it is aimed at
and the main features of the product.

 Use case model - Defines the functional requirements of the
system.

 Supplementary requirements - Defines the supplementary or
nonfunctional requirements of the system.

 Use case - Describes a service provided by the system.

 User interface prototype - Simulates the user interface, as defined
and testable by users. This is very important if the system has a
very complex GUI or has a series of nonfunctional requirements
relating to usability.

 Analysis model - Identifies key abstractions that make up the
system.

 Subsystem design - Describes the design of subsystems of the

analysis model, which will consist of a series of components.
 Risk list - Describes the risks to be mitigated during each iteration.
 Component - Consists of an executable unit of code to be deployed

in the executable system.
 Build - Groups a series of components into an entire system.
 Release - Consists of the particular collection of activities that

defines a particular release.
 Functional test - Tests the functionality needed to meet a particular

requirement.
 Performance test - Tests the performance of the system.
 Test environment - Sets up the test environment for a particular

iteration.
 Defect/Enhancement - Outlines the process for resolving defects or

performing enhancements in response to user feedback on the
other deliverables.

 Development environment - Sets up the development environment
and manages changes to this environment.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 43

4.5.3 Selection of the Appropriate Workflow Template

For each deliverable, there is an associated workflow template in the RUP®

that identifies the activities required to realize this deliverable. An activity
includes roles, artifacts and guidance (help steps). Certain activities may
not be appropriate for the particular project or iteration and these can be
omitted. The amount of time allowed for activities will depend on the total
time allocated for this iteration in the project plan.

4.5.4 Assocation of Resources with Activities

Resources need to be associated with each particular activity in the
iteration plan. The workflow template provides hints as to which resources
are required by defining the roles that need to be played in each activity.

The planner must fill the roles with actual workers.

4.5.5 Definition of Monitoring and Control Processes

The project manager needs monitoring and control processes that check
vital signs of the project with regard to the software development plan.
Typically, the project manager will be concerned with indicators that apply
to the projects scope of work, progress, budget, quality and risks. The
RUP® suggests that project managers do the following:

 Define project indicators to alert the project manager to instigate
corrective actions as required.

 Define sources for project indicators.
 Define and communicate a procedure and reporting frequency for

project team members to report their status.
 Define thresholds for the project indicators.
 Define a procedure for project status reporting.

4.5.6 Assessment of Iterations

After completing an iteration, the project manager and the development
team should assess the success or failure of the iteration and capture
lessons learned, so they can be applied to modify aspects of the project or

to improve the process. This very important step will also help ensure that
future projects will reflect the lessons learned in the iteration.
Project managers should do the following:

 Collect metrics and progress information on the project so that
actions can be taken that may involve re-planning, retooling,
training, or process reorganizing, team and tools.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 44

 Assess the results of the iteration as compared with expected
results, in terms of functionality, performance, capacity and quality
measures.

 Examine the evaluation criteria to ensure that the goals are not set

too high or too low, that the requirements are still valid and that
the features are still economically justified.

 Use the results of the assessment to generate change requests for
the vision, the risk list, the project plan, subsequent iteration plans
or the development case and requirements.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 45

5 Overview of Available Tools

The following table shows which tools are included in the available editions
of the Rational Suite.

 Project
Leaders /

Managers

Analysts Developers Testers All Roles Web
Teams

 Team

Unifying
Platform

Analyst

Studio

DevelopmentStudio DevelopmentStudio

RealTime Edition

Test

Studio

Enterprise Content

Studio

 Windows Windows Windows UNIX Windows UNIX Windows Windows Windows

Tool

T
e
a
m

 U
n
ify

in
g

 P
la

tf
o
rm

Rational Unified

Process

Rational
RequisitePro

(Web)

(Web)

Rational

ClearQuest

(Web)

(Web)

Rational SoDA

(W)

(W)

(W)

(F)

(W)

(F)

(W)

(W)

(W)

Rational
ClearCase LT

Rational
TestManager

Rational

ProjectConsole

Rational Rose

(M)

(E)

(U)

(RT)

(RT/U)

(E)

Rational
PureCoverage

Rational
Purify

Rational

Quantify

Rational

Robot

Rational
TestFactory

Rational

Process Workbench

Rational

NetDeploy

Rational
SiteLoad

M Professional Data Modeler Edition
E Enterprise Edition

U UNIX Edition
RT RealTime Edition

W Microsoft Word
F Adobe FrameMaker

Web Access also through the Web Interface

Table 6 Rational Tools Overview

5.1 Rational Suite Team Unifying Platform

Rational Suite Team Unifying Platform is a suite of tools that is included in
every edition. It provides best practices and integrated tools for managing
change, building quality and communicating results from requirements to
release.

The Team Unifying Platform is designed for project members who need
access to common project artifacts, but do not need any of the optimized,
role-specific tools found in the other editions. Project and program
managers, project administrators and development managers use the
tools in this edition.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 46

The Team Unifying Platform Suite edition contains the following tools:

5.1.1 Rational Unified Process®

The Rational Unified Process® is an online collection of software best
practices that guide a team through the software development process. It
provides guidelines, templates and tool mentors for each phase of the
development lifecycle.

Rational Unified Process® platforms: Windows, UNIX

5.1.2 Rational RequisitePro®

Rational RequisitePro® helps to organize, prioritize, track and control
changing project requirements. RequisitePro® comes with the
RequisiteWeb® interface which lets users to access, create and manage
requirements from a Web browser.

RequisitePro® platforms: Windows

RequisiteWeb® platforms: Windows, UNIX

5.1.3 Rational ClearQuest®

Rational ClearQuest® manages change activity associated with software
development, including enhancement requests, defect reports and
documentation modifications.
The ClearQuest® Web interface lets users to perform all major
ClearQuest® operations, such as submitting records, finding records,
creating or editing queries and reports, and creating shortcuts, from a
Web browser.

ClearQuest® MultiSite lets users to share information across a
geographically distributed team.

ClearQuest® platforms: Windows, UNIX (a Windows workstation must
configured as administrator for the ClearQuest® repository)
ClearQuest® Web Interface platforms: Windows, UNIX

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 47

5.1.4 Rational ClearCase® LT

Rational ClearCase® LT provides software configuration management and

a built-in process to track changes to all software project assets, including
requirements, visual models and code. It also provides a Web interface
that lets users perform all major ClearCase® LT operations. Rational
ClearCase® LT supports Unified Change Management, the Rational best-
practices-process for managing change and controlling workflow.

ClearCase® LT platforms: Windows, UNIX

5.1.5 Rational SoDA®

Rational SoDA® automatically generates project documents by extracting

information from files produced during project development, including
source code and files produced by Rational tools. SoDA® uses templates,
either predefined or ones that the user customize, to format the
information.

SoDA® platforms: Windows (Microsoft Word), UNIX (Adobe FrameMaker)

5.1.6 Rational TestManager

Rational TestManager helps to create real-world functional and multiuser
tests to determine the performance and reliability of Web, multitier and

database applications. TestManager tracks the number of tests that have
been planned, scripted and run; which requirements have been covered;
and the number of tests that have passed and failed. TestManager gives a
team the information it needs to objectively assess project status and
create reports to communicate these findings to project stakeholders.

TestManager platforms: Windows, UNIX

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 48

5.1.7 Rational ProjectConsole®

Rational ProjectConsole® helps to track project metrics by automatically

generating charts and gauges from data produced during software
development. ProjectConsole® is integrated with Microsoft Project so that
the user can create a centralized project plan. ProjectConsole® helps to
organize project artifacts on a central Web site so all team members can
view them.

ProjectConsole® platforms: Windows

5.1.8 Rational ContentStudio®

Rational ContentStudio® offers distributed authoring capabilities, allowing

Web content contributors to add and update content using templates.
These templates allow the Web development team to separate the text
and editable portions of a site from the design elements, so content
contributors can modify Web material while maintaining a consistent look
and feel of the Web site.

ContentStudio® platforms: Windows

5.1.9 Rational NetDeploy®

Rational NetDeploy® simultaneously delivers all changes to related code

and content to multiple staging or production servers. NetDeploy® lets to
schedule one-time, recurring or dependency-based deployments. It can
also automatically identify groups of files (code and content) that need to
be deployed together.

NetDeploy® platforms: Windows

5.1.10 Rational SiteLoad®

Rational SiteLoad® is a testing tool that simulates internet traffic and
provides developers with precise real-time information on Web site

performance.

SiteLoad® platforms: Windows

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 49

5.2 Rational Suite AnalystStudio®

Rational Suite AnalystStudio® is customized for team members who
gather and manage project requirements.

AnalystStudio® platforms: Windows

5.3 Rational Suite DevelopmentStudio®

Rational Suite DevelopmentStudio® is customized for software architects,
designers and developers. These team members use DevelopmentStudio®
to design, evaluate, implement and test software architecture and
applications.

DevelopmentStudio® platforms: Windows, UNIX

5.4 Rational Suite DevelopmentStudio®-RealTime

Rational Suite DevelopmentStudio®-RealTime is customized for software
architects, designers and developers of real-time embedded software. This
suite provides an integrated set of development and testing tools to
optimize the development of complex software for devices such as cell
phones and pagers and infrastructure software for the routers and hubs
that connect and power the Internet.

DevelopmentStudio®-RealTime platforms: Windows, UNIX

5.5 Rational Suite TestStudio®

Rational Suite TestStudio® is designed for team members who are
responsible for software quality assurance, functional testing, performance
testing and load testing.

TestStudio® platforms: Windows

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 50

The Rational Suite TestStudio® edition contains the following tools:

5.5.1 Rational Robot

Rational Robot determines whether the system meets its requirements by
testing how it responds to a user-driven scenario. With the interface of
Robot, the user can record a test and insert verification points to monitor

expected behavior. Also replay functions to test as often a developer need
are integrated.

Robot platforms: Windows

5.5.2 Rational TestFactory®

Rational TestFactory® automatically generates tests that pinpoint severe
defects: the places where the application crashes, hangs or behaves in
unexpected ways. It also generates test scripts that exercise the
maximum amount of code using the least number of steps. TestFactory®

stores the test scripts, results and defect scripts in a project that it shares
with Robot and other Rational testing tools. A team can generate coverage
and progress reports from test results in this project. Robot can later
rerun TestFactory® scripts to ensure that all tests are repeatable.

TestFactory® platforms: Windows

5.6 Rational Rose®

Rational Rose® helps to visualize, specify, construct and document the
structure and behavior of the systems architecture. Rose® can provide a
visual overview of the system using the Unified Modeling Language (UML),
the industry-standard language for visualizing and documenting software
systems.
Using visual models helps manage system complexity because the

manager can see the “big picture.”
Rational Rose® unifies the team by helping to create such models so that
all stakeholders gain perspective and share a common understanding of
the project goals, path and expected deliverables.
Modeling with Rose® is also an effective way to continuously communicate
change and the impact of change throughout the development lifecycle.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 51

The Rational Rose® edition contains the following tools:

5.6.1 Rational QualityArchitect®

Rational QualityArchitect® automates the mechanical aspects of test code
creation by generating test code from visual models. This lets developers
automatically generate component tests and build stubs and drivers

before an application is complete. This feature helps to reduce project risk
because the team can test early and often, determining how a potential
system architecture meets functional and performance requirements
before developing the design further.
Enterprise JavaBeans, COM, COM+ and DCOM models are supported.

QualityArchitect® platforms: Windows

5.6.2 Rational Purify®

Rational Purify® checks every active C++ and Java component in a

program for run-time errors and memory leaks, the most difficult errors to
find. They are the most important to correct because they often remain
undetected until triggered by some random event. A program can appear
to work correctly for a long time before these types of errors are
discovered.

Purify® platforms: Windows, UNIX (C++ only)

5.6.3 Rational PureCoverage®

Rational PureCoverage® provides a report of each line in the code that has

been run. This information lets determine if tests have actually run the
lines of code that were intended to be tested.

PureCoverage® platforms: Windows

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 52

5.6.4 Rational Quantify®

Rational Quantify® detects performance bottlenecks, which are places

where the code is running inefficiently. It pinpoints where the application
is spending its time and helps to discover why a specific function is
particularly slow. Quantify® helps to improve system performance so that
the team can deliver efficient software.

Quantify® platforms: Windows

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 53

6 Usage of Tools

All Users

Analyst Developer

Rational® ClearCase® LT

Rational® ClearQuest®

Rational Unified Process®

Rational® RequisitePro®

Rational® ProjectConsole

Rational® Unified Change Management

Rational® TestManager

Tester Administrator

Rational® Purify®, PurifyPlus

Rational® PureCoverage®

Rational® Quantify®

Rational® Rose®

Rational® Rose® RealTime

Rational® QualityArchitect

Rational Suite® License Management

Rational Suite® Installation

Rational Suite® Administration

Rational Suite® ProjectConsole

Rational® Unified Change Management

Rational Suite® AnalystStudio®

Rational® Rose®

Rational® Purify®, PurifyPlus

Rational® PureCoverage®

Rational® Quantify®

Rational® Robot

Rational® TestFactory®

Figure 11 Rational Tools Roadmap

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 54

6.1 Analyst

6.1.1 Definition of Requirements

Rational RequisitePro® enhances team communication by helping analysts

capture, manage and articulate requirements in a form accessible to all
stakeholders.

 An analyst use Microsoft Word to document project requirements.
 Throughout the software development lifecycle, the analyst use

requirements to communicate what to build and test. The
requirements form the foundation of the system definition by
defining the product vision and describing the systems features,

functionality and attributes.
 The analyst store and track this information in the RequisitePro®

database to optimize requirements management. The database
assign attributes to requirements for organization, prioritization and
change history. These attributes can be traced to related
requirements so that the analyst can quickly assess the impact of
any changes on requirements as development evolves.

 Because every team member must share a common understanding

of project goals and objectives, the analyst keeps the team up to
date on requirements activities.

 RequisitePro® makes this easy by providing Rational
RequisiteWeb®. This Web-based tool lets UNIX users and other
team members who do not have RequisitePro® on their desktops to
create, review and update requirements.

6.1.2 Managing Changes

Rational ClearCase® LT is a configuration management solution for small

project teams. This tool helps the team to manage changing artifacts,
such as Web content, code, visual models and test assets as the system
evolves.

 An analyst use ClearCase® LT to manage changes to project
requirements. The tool also associates requirements with releases
and other project assets.

 The analyst also uses ClearCase® LT to archive requirements. It
tracks changes to all project files, allowing team members to work

in parallel and continuously integrate their changes to the project
baseline.

 ClearQuest® encourages collaboration by tracking new feature,
enhancement or change requests from team members and other
stakeholders. The ClearQuest® Web interface ensures that UNIX
user and other team members who do not have ClearQuest® on
their desktops can participate in this collaboration.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 55

 With ClearQuest®, the team and other stakeholders can evaluate
requests, determine their impact on the system and when
applicable, validate the changes.

 To establish how change requests fit into the structure of features

and main requirements, the analyst can link requests to an existing
or new project requirement in RequisitePro®.

 ClearQuest® MultiSite lets geographically distributed teams replicate
a centralized database at each remote site and then synchronize
the changes between sites.

6.1.3 Team Communication

Rational Rose® helps the analyst to visualize, specify, construct and
document the structure and behavior of the system architecture.

 With Rose®, the analyst can provide a visual overview of the system

using the Unified Modeling Language (UML). Using visual models
helps manage system complexity because the project team can see
the “big picture.”

 Rose® unifies the team by helping the analyst to create such
models so that all stakeholders gain perspective and share a
common understanding of the project goals, path and expected
deliverables.

 Modeling with Rose® is also an effective way to continuously
communicate change and the impact of change throughout the
development lifecycle.

6.1.4 Progress Measuring and Project Reports

Rational ProjectConsole® extracts information from data produced during
software development by tools like RequisitePro® and ClearQuest®.

 ProjectConsole® automatically generates pre-formatted or
customized charts and graphs depicting the collected metrics. These
metrics can share the project status information with members of

the team.
 ProjectConsole® also analyzes data in a single view that reflects

data collected from multiple sources.

Rational SoDA® generates up-to-date project reports of data extracted
from one or more tools in Rational Suite.

 SoDA® can work with one tool, such as RequisitePro® or combine

information from more than one tool, such as Rational
RequisitePro® and ClearQuest®.

 SoDA® offers reporting features that provide templates in either
Microsoft Word for Windows or Adobe FrameMaker.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 56

6.1.5 System Test

Rational TestManager lets testers manage test planning, design,

development, execution and analysis and share these assets with team
members throughout the development lifecycle.

 With TestManager the analyst can build test assets from use cases.

6.2 Developer

6.2.1 Validation of Requirements

Rational RequisitePro® provides up-to-date requirements data in a form
accessible to all stakeholders. This access is provided with RequisiteWeb®,
a Web interface that lets all team members create, review and update
requirements.

 When the developer see additions or changes to requirements in

RequisitePro®, he can incorporate these changes into the project
Rose® models.

 With this changes the developer gain an understanding of the
impact these changes have on the system.

 The Developer can also communicate these changes and impacts to
team members, e.g. analysts, developers, testers, project leaders
and other stakeholders.

6.2.2 Managing and Validation of Changes

Rational ClearQuest® tracks features, enhancements or change requests
from team members and other stakeholders in a form accessible to

everyone.
 The ClearQuest® Web interface ensures that UNIX users and other

team members who do not have ClearQuest® on their desktops can
create and review project data and provide feedback.

 The developer use Rose® models to visualize the effects of these
requests on the system architecture.

Rational ClearCase® LT helps the developer to control changes to source

code and other project items, such as RequisitePro® databases and Rose®
model files.

 ClearCase® LT tracks changes to every file and directory,
maintaining histories of source code, binaries, executables,
documentation, test suites, libraries and user-defined objects.

 The developer can use ClearCase® LT from a development
environment, e.g. Microsoft Visual Studio, Visual Age for Java, as

well as Microsoft Word, FrontPage, Visual InterDev and
PowerBuilder.

 By organizing an effective development structure, ClearCase® LT
helps software teams to accelerate build and release cycles.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 57

Rational ProjectConsole® provides Web access to the projects current
artifacts, metrics and best practices.

 ProjectConsole® automatically collects metrics at regular and user-

specified intervals from Rational tools and Microsoft Project.
 These metrics are graphically displayed in personalized views on the

project Web site. This reporting mechanism provides accurate,
objective and up-to-date information to team members about the
status and trends.

Rational SoDA® lets the developer to generate up-to-date project reports
for the entire team by extracting data from one or more tools.

 SoDA® can work with one Rational tool or combine information from
more than one tool.

 Its reporting features provide templates in either Microsoft Word or
Adobe FrameMaker.

6.2.3 Team Communication

Rational Rose® helps the developer to visualize, specify, construct and
document the structure and behavior of the system architecture.

 With Rose®, the developer can provide a visual overview of the

system using the Unified Modeling Language (UML).
 Rose® unifies the team by helping the developer to create high-

quality architecture models that all team members can share, test
and revise.

 During design and code reviews, team members use project models
to assess the ramifications of changes they want to make to the
code.

6.2.4 Code and Model Implementation and Consistency

The developer can accelerate coding by generating code frameworks from

models developed in Rational Rose®. This process is called “Forward
Engineering”. Rose® supports many languages, including Visual Basic,
Visual C++, ANSI C++, Java and IDE’s including Visual Age for Java,
Visual Studio, HP Workbench and Sun Workshop.

After the developer modifies the code, he can use Rose® to bring code
changes into the model. This process, “Reverse Engineering”, ensures that

the model and code remain consistent throughout the project.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 58

6.2.5 System Test

A developer must test the code as soon as he implements it. Rational

Suite provides testing tools to use as soon as the developer have a
working program, allowing to test all dimensions of quality with
automated debugging, performance testing and verification of code
coverage.

Rational QualityArchitect® is a feature that automates the mechanical
aspects of test code creation by generating test code from visual models.

 This lets developers automatically generate component tests and

build stubs and drivers before an application is complete.
 This feature helps to reduce project risk because the team can test

early and often, determining how a potential system architecture
meets functional and performance requirements before developing
the design further.

 Enterprise JavaBeans, COM, COM+ and DCOM models are
supported in this feature.

Rational Purify® checks every active C++ and Java component in a
program for run-time errors and memory leaks.

Rational PureCoverage® provides a report of each line in the code that has
been run. This information lets the developer to determine if the tests
have actually run the lines of code that were intended to be tested.

Rational Quantify® detects performance bottlenecks, which are places
where the code is running inefficiently. It pinpoints where the application
is spending its time and helps the developer to discover why a specific
function is particularly slow. Quantify® helps to improve system
performance so that a developer can deliver efficient software.

Rational TestManager helps the developer to keep track of the number of

tests that have been planned, implemented and run.
 It also helps to track which requirements or Rose® model elements

have been covered in testing and the number of tests that have
passed and failed.

 Team members can use TestManager to evaluate how well they are
meeting project requirements from early in the development
lifecycle and communicate these findings to project stakeholders.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 59

6.3 Tester

6.3.1 Team Communication

Rational RequisitePro® provides current, accurate information about

requirements. RequisitePro® indicates to a tester that there are new or
revised requirements that need to be tested.

 The tester uses the requirements and related artifacts to create a
test plan and track testing progress.

 The RequisitePro® Web interface, RequisiteWeb®, lets team
members and customers who do not have RequisitePro® on their
desktops create, review and update requirements.

Rational ProjectConsole® unifies the team by allowing all contributors Web
access to current project artifacts and metrics.

 This tool extracts information from data produced during software
development and automatically generates charts and gauges, either
predefined ones or ones that the user customizes.

 These metrics are graphically displayed in personalized views on the
project Web site, providing accurate, objective and up-to-date

information about the project status and trends.
 ProjectConsole® also lets the tester to analyze data in a single view

that has been collected from more than one source.

Rational SoDA® extracts information from one or more tools and combines
this information into reports about the project.

 The team can evaluate test results against requirements data from

RequisitePro®.
 SoDA® offers reporting features that provide templates in either

Microsoft Word or Adobe FrameMaker.

6.3.2 Progress Measuring

Rational TestManager lets the tester to use all types of project artifacts to
plan, design and run tests.

 Requirements, visual models and source code are some of the test
inputs that the tester can use to create a test plan, so that all
aspects of the system can be tested, including product features,

system architecture and code.
 With TestManager, test inputs are used to create specific test cases.

A test case describes a testable and verifiable behavior in a system.
It can also describe the extent to which the tester will test an area
of the application.

 The tester can run multiuser performance tests for Web, multitier
and database applications. Using simple point-and-click operations,

the tester can create usage scenarios that simulate conditions in
the system while it is being run by thousands of users.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 60

 When the original artifact changes, the tester are automatically
prompted to re-evaluate the related test asset. Then he can decide
to update the test artifact, if necessary.

 The TestManager can verify whether the tester has tested all

requirements and whether the test cases based on these
requirements pass the tests. This relationship between project
assets lets he tests for quality early in the development lifecycle,
often beginning with product features and continuing through
implementation and release.

6.3.3 System Test

Rational ClearQuest® tracks the defects that are found in the software
project and provides a description, as well as other details, about the
bugs.

 The ClearQuest® Web interface is a Web-based version of
ClearQuest® that lets all team members create, review and update
defects and change requests from any platform.

 Team members are able to access and create records, queries and
reports on areas of interest specific through the Web module as
they would through the client version.

Rational TestFactory® automatically generates tests that pinpoint severe
defects: the places where the application crashes, hangs or behaves in
unexpected ways.

 TestFactory® generates test scripts that exercise the maximum
amount of code using the least number of steps.

 TestFactory® stores the test scripts, results and defect scripts in a
project that it shares with Robot and other Rational testing tools.
The team can generate coverage and progress reports from test

results in this project.
 TestFactory® generates its own tests, the tester can start reliability

testing early in the development process without having to budget
more time to develop and run these tests.

Rational Robot determines whether the system meets its requirements by
testing how it responds to a user-driven scenario.

 The tester can record a test and insert verification points to monitor
expected behavior.

 The tester can also replay the test as often as he need.
 After the test, the tester can view the results and the complete

details of any failures: what test was running, what type of failure
occurred, where it occurred and which verification point failed.

Rational Purify® checks every active C++ and Java component in a
program for run-time errors and memory leaks.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 61

Rational Quantify® detects performance bottlenecks, highlighting places
where the code is running inefficiently. It pinpoints where the application
is spending its time and why a specific function is particularly slow.

Rational PureCoverage® highlights untested areas of the system so that
the tester can build a more comprehensive set of tests.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 62

Links

Rational® Software provides support for enterprise
application development on J2EE, .NET, Linux and other
platforms to support application deployment on the
customer hardware and software platforms. The tools also
are used to build technical software, commercial software

products and software for embedded devices and real-time systems, such
as pagers, cell phones, medical devices, air traffic control systems and
government defense systems.
In 2002 the company was assumed by IBM.

Homepage: http://www-306.ibm.com/software/rational
developerWorks: http://www-136.ibm.com/developerworks/rational
FAQ: http://www-306.ibm.com/software/awdtools/rup/faq

http://www-306.ibm.com/software/rational
http://www-136.ibm.com/developerworks/rational
http://www-306.ibm.com/software/awdtools/rup/faq/

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 63

References

Books:

Whitepapers: Quality Management, Certitude GmbH, Munich, February

2004

 The Ten Essentials of RUP® - The Essence of an Effective

Development Process, Leslee Probasco, Rational
Software Corporation, Cupertino, 2000

 Planning A Project with RUP®, David West, Rational

Software Corporation, Cupertino

Articles: A Rational Development Process, Phillippe Kruchten,

Crosstalk Magazine, July 1996

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 64

Trademarks and other Acknowledgements

“Rational”, the Rational logo, “RUP”, “Rational Unified Process” and
Rational products are trademarks or registered trademarks of Rational
Software Corporation.

Whitepaper Collection Volume 5
Rational Unified Process® - An Overview

Version 1.7 Page 65

Glossary

Artifact Any document or software other than the software product

itself.
Baseline A release that is subject to change management and

configuration control
Construction The third phase of the process, where the software is

brought from an executable architectural baseline to the
point where it is ready to be transitioned to its user
community.

Cycle One complete pass through the 4 phases: inception-
elaboration-construction-transition. The span of time
between the beginning of the inception phase and the end
of the transition phase.

Elaboration The second phase of the process where the product vision

and its architecture are defined.
Evolution The life of the software after its initial development cycle;

any subsequent cycle, where the product evolve.
Generation The result of one software development cycle.
Inception The first phase of the process, where the seed-idea, RFP,

previous generation-is brought up to the point of being (at
least internally) founded to enter into the elaboration

phase.
Iteration A distinct sequence of activities with a base lined plan and

evaluation criteria.
Milestone An event held to formally initiate and conclude an

iteration.
Phase The span of time between two major milestones of the

process where a well defined set of objectives are met,
artifacts are completed and decisions are made to move or

not into the next phase.
Product The software that is the result of the development and

some of the associated artifacts (documentation, release
medium, training).

Prototype A release which is not necessarily subjected to change
management and configuration control.

Release A subset of the end-product which is the object of

evaluation at a major milestone.
Risk An ongoing or upcoming concern which has a significant

probability of adversely affecting the success of major
milestones

Transition The fourth phase of the process where the software is
turned into the hands of the user community.

Vision The users view of the product to be developed.

